Si	ubje ubje	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (OLD) EXAMINATION – SUMMER 2021 act Code:140001 Date:03/09/2021 act Name:Mathematics-IV			
Time:02:30 PM TO 05:30 PM Total Mark					
In	struc	tions:			
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 			
Q.1	(a)	Find real and imaginary parts of $(-1-i)^7 + (-1+i)^7$.	07		
	(b)	(i) Solve the equation $z^2 - (5+i)z + 8 + i = 0$.	04		
		(ii) Find the modulus and amplitude of i^i .	03		
Q.2	(a)	Prove that an analytic function with constant modulus is constant	07 07		
	(b)	Find and sketch the image of region $x \ge 1$ under the transformation $w = \frac{1}{z}$.	07		
	(b)	Define the mobius transformation and determine the mobius transformation that maps $z_1 = 0, z_2 = 1, z_3 = \infty$ onto $w_1 = -1, w_2 = -i, w_3 = 1$ respectively.	07		
Q.3	(a)	Evaluate $\int_C (x^2 - iy^2) dz$ along the parabola $y = 2x^2$ from (1,2) to (2,8).	07		
	(b)	Evaluate $\iint_{C} \frac{dz}{z^2 + 1}$, where C is $ z + i = 1$ in counterclockwise.	07		
Q.3	(a)	OR Write the two Laurent's series expansion in powers of z that represent the function $f(z) = \frac{1}{z^2(1-z)}$ it ertain domains and also specify domains.	07		
	(b)	Find a real root of the equation $x^3 - 4x - 9 = 0$, using the bisection method in four stages up to decimal places.	07		
Q.4	(a)	Find a root of $x^4 - x^3 + 10x + 7 = 0$ correct to three decimal places between $a = -2$ and $b = -1$ by using Newton-Raphson method.	07		
	(b)	Find the largest eigen value for $A = \begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 1 \\ 2 & 1 & 8 \end{bmatrix}$.	07		
Q.4	(a)	Solve $2x+5y-3z=1, 5x+y+4z=2$ and $7x+3y+z=4$ by using Gauss-Jordan	07		
	(b)	method. Solve $2x + y + 54z = 110, 27x + 6y - z = 85$ and $6x + 15y + 2z = 72$ correct upto three decimal places by using Gauss-Seidel method.	07		

Q.5 (a) For
$$\frac{dy}{dx} = y - \frac{2x}{y}$$
, $y(0) = 1$, $h = 0.1$ find $y(0.2)$ by using Euler's method. 07

1

Download all NOTES and PAPERS at StudentSuvidha.com

(b) Compute cosh(0.56) using Newton's forward difference formula and also estimate 07 the error for the following table.

Х	0.5	0.6	0.7	0.8				
f(x)	1.127626	1.185465	1.255169	1.337435				
OR								

07

(b) Evaluate $\int_0^6 \frac{1}{1+x} dx$, taking h = 1 and using Simpson's $\frac{1}{3}$ rule. Hence obtain an approximate value of $\log_e 7$.

tomater suithan con